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The Issue

WSNs as a new tool for distributed sensing

E.g. in environmental science
— High spatial coverage through many sensors

— Good temporal resolution/coverage (high rates, long-
term observations)

— Autonomous (disconnected) operation

Initially it was thought that imperfections in the
data are eliminated by heavy oversampling and
use Of aggregates [c.f. Smart Dust, Pister et al., 1999 and others]

However this is only theory (so far)



PermaSense

Consortium of several projects, start in 2006

Multiple disciplines (geo-science, engineering)

Fundamental as well as applied research
More than 20 people, 9 PhD students
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Competence in Outdoor Sensing

 Wireless systems, low-latency data transmission

e Customized sensors

 Ruggedized equipment

* Data management

e Planning, installing, operating (years) large deployments




Understanding Root Causes of
Catastrophes
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Eiger east-face rockfall, July 2006, images courtesy of Arte Television



What is the Role of Ice Filled Clefts?







So the laboratory has to
go on the mountain




Example: The X-Sense Platform
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Current Practice

e Asingle sensing point is still expensive despite high
integration and high-volume, lower-cost hardware

— Customization/heterogeneity

— Low volume (of customized units)

— Infrastructure requirements

— Considerable end-to-end system complexity
— Adequate protection (enclosures, connectors)
— |Installation/maintenance effort

e Substantial contribution of installation/maintenance
effort to the TCO of WSNs [c.f. Stankovic, Vetterli, Welsh, Culler]

— Installation = 1 man-day/sensor
— In most cases much more



Simple Low-Power Wireless Sensors
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e Simple scalar values: temperature, resistivity
e 3 years operation (~200 pA avg. power)
e < 0.1 Mbyte/node/day

3+ years experience, ~200’000°000 data points
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* GDI [Szewczyk], Glacsweb [Martinez], Volcanoes [Welsh],
SensorScope [Vetterli], Redwoods [Culler]

e Lower data rate

e Harsher environment, longer lifetime
e Higher yield requirement

_+ Focus on data quality/integrity
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Low-power WSN Technology

Shockfish TinyNode184
— MSP430, 16-bit, 8MHz, 8k SRAM, 92k Flash
— LP Radio: SX1211 @ 868 MHz

Sensor interface board
— 1 GB storage

3-year life-time

Dozer - ultra low-power data gathering system
— Multi-hop, beacon based, 1-hop synchronized TDMA
— Optimized for ultra-low duty cycles
— 0.167% duty-cycle, 0.032mA

Contention window Data transfer Application processing window Beacon
O
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Ruggedized for Alpine Extremes
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Field Site Support

e Base station

— On-site data aggregation
— Embedded Linux

— Solar power system

— Redundant connectivity
— Local data buffer

— Database synchronization

e Cameras
— PTZ webcam
— High resolution imaging (D-SLR)

e \Weather station

e Remote monitoring and control




Installation/Maintenance Effort




Towards Higher Reliability

e Many applications require “accuracy”
— Accuracy at the sample level (calibration, repeatability)
— Accuracy at the ensemble level (deterministic behavior)
— Specific knowledge of the sensing “location”

e Users require homogeneous data quality, e.g. uniform
rate primary data without holes

— It’s a long time from theory to practice for ideas like stochastic
sampling to be accepted by domain users

— Accurate timing is a must have

— It is next to impossible to quantify performance & maintain
quality operation if failures are acceptable behavior



Deployment Sites 3500 m a.s.l.

A scientific instrument for precision sensing and data
recovery in environmental extremes




Established: Rock/ice Temperature

Aim: Understand temperatures in heterogeneous rock and ice

e Measurements at several depths
e Two-minute interval, autonomous for several years
Survive, buffer and flush periods without connectivity
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Established: Crack Dilatation

Aim: To understand temperature/ice-conditioned rock kinematics

e Temperature-compensated, commercial instrument

e Auxiliary measurements (temperature, additional axes,...)
e Two-minute interval, autonomous for several years

* Protection against snow-load and rock fall




Results: Rock Kinematics
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[Hasler, A., Gruber, S. & Beutel, J. Kinematics of steep
bedrock permafrost, Journal of Geophysical Research]



Observation: Acceleration Behavior
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Assumptions/Hypothesis

 High up-front investments call for reliable interaction
of all system components at all layers

— Local buffer storage
— Data synchronization, acknowledgements

— No single points of failure, redundancy (also in access
networks and servers)

— Timing integrity
— Data validation

e Knowledge about the “origin” nature of all primary
data along the whole processing chain is key

— Traceability, quality metrics, data integrity
— Accounting for human-in-the-loop






PermaSense System Architecture

Sensor NodeE Wireless Sensor Network




Local Data Storage on Every Layer
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WSN On-Node Storage Layer

 On-node flash based storage (SD-Card)

— Integrated with Dozer gueuing mechanism (beacon traces
& per-link ack’s with backpressure)

— All generated packets are stored on local flash memory
— Packets not yet sent are flagged for sending later

— Bulk access optimized for flash memory (no single packet
transfers)

 Enables both delayed sending (disruptions) and post-
deployment validation



Mitigating Post WSN Data Loss

 BacklLog = Auxiliary data aggregation layer at device level
— Remote storage and synchronization layer for Linux systems
— Python based, designed for PermaSense CoreStation
— Plugin architecture for extension to custom data sources
— Data multiplex from plugin to GSN wrapper over one socket

e Reliable (flow controlled) synchronization
e Schedulable plugin/script execution, remote controlled

CoreStation (Device ID1)
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WLAN Long-haul Communication

e Data access from weather radar on
Klein Matterhorn (P. Burlando, ETHZ)

: N . Leased fiber/DSL from Zermatt
Bergbahnen AG

« Commercial components (Mikrotik)
* Weatherproofed
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Redundant Access
& Monitoring

e Dual WLAN & 3G
access network

e Redundant base
stations (DH/GG/RD)

e Distributed monitoring
infrastructure




Hierarchical Online Data Processing

* Global Sensor Network (GSN)

— Data streaming framework from EPFL (K. Aberer)

— Organized in “virtual sensors”, i.e. data types/semantics

— Hierarchies and concatenation of virtual sensors enable on-line processing

— Dual architecture translates data from machine representation to Sl values,

adds metadata

Import from field GSN

generation_time =
titestamp 2
header_seqgnr =
header_originatorid 2
header_atime =
payload_sample_walid 1
payload _sample_no 6486

Private

payload_an_1 5351
payload_an_2 B357
payload_an_3 5352
payload_aD_4 8353
payload_al_5 =354
payload_an_& 8355
payload_al_7F &350
payload_aD_@a 8357
payload_ald_9 5358
payload_an_10 2359
data_import_source rul

vy

Metadata

Position
Sensor type
Validity period

GSN

Web export

timestamp 1267047258207
generationtime 1267047167207
position &
sensortype srinull
sensortype_serialid 2640281154
header_seqnr 22381
header_originatorid 2002
header_atime 91
payload_sample_valid 1
payload_sample_no 30397
sr_refl 1.8393
sr_ref2 -9.8120
sr_t1 -0.9247
sr_t2 -10.8771
sr_t3 -11.9102
sr_t4 -12.0755
sr_ref3 1.8923
sr_refq -9.2147
sr_ref5 1.8950
sr_rl 743,186




Multi-Site, Multi-Station, Multi-Revision Data...
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Metadata Mapping Architecture

Based on 2 GSN instances

— Separation of load/concern across two machines
— “Private” GSN instance, raw data, protected, high availability
— “Public” GSN instance, mapped and converted data, open, non-critical

Metadata stored in version control system (CSV, SVN)
Mapping of
— Positions, coordinates, sensor types, conversion functions, sensor calibration...

Conversion of

— Time formats, raw to Sl values...

Replay of metadata/mapping possible, e.g. on errors
Change management



Metadata Change Management

e Allows simple exchange of sensor hard-/software at runtime

e Post-deployment annotation
— Stop GSN- deployment change — annotate metadata — restart GSN

e Automatic synchronization with 1 day change boundaries
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Challenge: The Physical Environment

e Lightning, avalanches, rime,
prolonged snow/ice cover, rockfall

e Strong daily variation of temperature

— -30to +40°C
— AT = 20°C/hour
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Impact of Environmental Extremes

 Tighter guard times increase energy efficiency

e Software testing in a climate chamber
— Clock drift compensation yields + 5ppm

e Validation of correct function

50
—— Temperature

= 160 — . 40
£ : Storage Duration —
c p—— i .
S 120 DAQ Duration . 130 .S
© © Watchdog Resets -~ ‘ ' , =
- § P 5
2 gor .1 ) 1§ 150 B
o B AN ' g
5 oS, &
v R T e i GO 110

[pd ............ . .. | 0

0 2 4 6 8 10 12 14

Time [hours]
[Beutel, DATE 2011]



Reconstructing of Global Time Stamps

* WSN do not have network-wide time synchronization
— Implications on data usage

 Elapsed time on arrival
— Sensor nodes measure/accumulate packet sojourn time

— Base station annotates packets with UTC timestamps
— Generation time is calculated as difference t, =t, —t;

4 sec \
b P 2011/04/14 10:03:31 — 7 sec
= 2011/04/14 10:03:24

[Keller, IPSN 2011]



Resulting Challenge: Data Integrity

e "R e TN

 Long term deployment
« Up to 19 sensor nodes ;:.L A ¥
* TinyOS/Dozer [Burri, ~ e
IPSN2007] S,
+ Constant rate sampling p= 13"
» < 0.1 MByte/node/day (Y=

== 2009
~Arrival time at the sink

—

2010

S e o S

s

(e)]
o
4]
I~
bz_'
=z

B
o
@
B

rno
o
@

N

Total number of packet duplicates

o

2009 2010 2009 2010

Arrival time at the sink Arrival time at the sink



Data is Not Correct-by-Design

e Artifacts observed

— Packet duplicates

— Packet loss

— Wrong ordering

— Variations in received vs. expected packet rates

* Necessitates further data cleaning/validation

Unfiltered
Data

Inserted first stage

Second stage

S

Model-based

Verified

~

“~—

Testing and
Reconstruction

Data

Non-conforming data

Application
Domain
Filtering
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Sources of Errors Included in Model

Data Loss

Node reboot

>
Waiting Queue reset Empty
packets gueue

Packet Duplicates
@ Lost 1-hop ACK
’— '/\
B s
“©

> %
Retransmission

Clock Drift pe [ *p; +p] '_
Directly affects measurement of ®
e Sampling period T
« Contribution to elapsed time t,
Indirectly leading to inconsistencies
* Time stamp order Z, vs. order of
packet generation s

Node Restarts
o Cold restart: Power cycle
 Warm restart: Watchdog reset

NN

e
T <T
« Shortens packet period

 Resets/rolls over certain counters

>



Model-based Data Validation Case Studies

e Validation of correct system function

[ Counter

| A)Jul 08-Nov 08 | B) Nov 08-Aug 09 [ C) Sep 09-May 10 |

l Accepled packets

| 632,058 (59.4%) | 2,110,855 (96.8%) | 2.579.444 (95.4%) |

Discarded packets

432,826 (40.6%) 69.829 (3.2%) 124,554 (4.6%)

to(i) > 3™

Packet duplicates

Failed epoch assignment

Invalid interval f_‘q“l{i}

4.020(0.4%) 69,422 (3.2%) 44.601 (1.7%)

0(0.0%) 0(0.0%) 0(0.0%)
277 (0.0%) 2,466 (0.1%)
192,879 (18.1%) 130 (0.0%) 771487 (2.9%)

l Total packets

1.064.884 (100.0%) | 2.180.684 (100.0%) | 2.703.998 (100%)

[ Deployment | Matterhorn | Jungfraujoch | Thur |
Packet counters, mean per node
Unique [.117.659 1.117.338 | 915,003 .
Missing 667 5.368 29
Duplicates 59,333 85,901 11,293
Data vield
] 99.94% 99.53% 100.00%
min 99.88% 06.28% 99.99%
max 100.00% 100.00% 100.00%
Radio duty cycle
max 0.26% 1.31% 0.12%
Median 0.14% 0.34% 0.07%

[Keller, SenseApp 2011, IPSN 2011]

# of sequence violations (log scale)

Long-term comparison of three field sites
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Example: The X-Sense Platform
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Low-cost L1 GPS Devices

GPS Measurement Devices

GPS sensor & .

Dual strategy: Logging units & N %

N inclinometer

. o
wireless sensors e NN
High temporal resolution £ '

b o
Accurate displacement-rate of a -
boulder (mm-cm accuracy for daily R
position) .. -V
[Wirz, WLF 2011, Buchli SGM 2011] solar panel §
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X-Sense Field Site _
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GPS Data Analysis

e Post-processing of GPS time series

— Correction to coordinates at ground level

— Derivation of differing measures of velocity
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GPS Data and Simulation Combined

e Comparison with environmental data
— First peak during snow melt, second during heavy precipitation
— Third peak has no apparent correlate

Snow-corr 1 @ Snow-corrSI
e Snow-corr 2 ¢ vel hor
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Data Fusion and Interpretation
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e ETH Zurich

— Computer Engineering and Networks Lab
— Geodesy and Geodynamics Lab

* University of Zurich
— Department of Geography

. EPFL
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